3.6.76 \(\int x^2 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^2 \, dx\) [576]

Optimal. Leaf size=351 \[ \frac {b^2 x \sqrt {d+c d x} \sqrt {e-c e x}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d+c d x} \sqrt {e-c e x}-\frac {b^2 \sqrt {d+c d x} \sqrt {e-c e x} \text {ArcSin}(c x)}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^2 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^2+\frac {\sqrt {d+c d x} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^3}{24 b c^3 \sqrt {1-c^2 x^2}} \]

[Out]

1/64*b^2*x*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/c^2-1/32*b^2*x^3*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)-1/8*x*(a+b*arcsi
n(c*x))^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/c^2+1/4*x^3*(a+b*arcsin(c*x))^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)-1/
64*b^2*arcsin(c*x)*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/c^3/(-c^2*x^2+1)^(1/2)+1/8*b*x^2*(a+b*arcsin(c*x))*(c*d*x+
d)^(1/2)*(-c*e*x+e)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/8*b*c*x^4*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/
(-c^2*x^2+1)^(1/2)+1/24*(a+b*arcsin(c*x))^3*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/b/c^3/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.50, antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4823, 4783, 4795, 4737, 4723, 327, 222} \begin {gather*} \frac {b x^2 \sqrt {c d x+d} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {c d x+d} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {c d x+d} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^2}{8 c^2}+\frac {\sqrt {c d x+d} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^3}{24 b c^3 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {c d x+d} \sqrt {e-c e x} (a+b \text {ArcSin}(c x))^2-\frac {b^2 \text {ArcSin}(c x) \sqrt {c d x+d} \sqrt {e-c e x}}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b^2 x \sqrt {c d x+d} \sqrt {e-c e x}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {c d x+d} \sqrt {e-c e x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]

[Out]

(b^2*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/(64*c^2) - (b^2*x^3*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/32 - (b^2*Sqrt[d
+ c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x])/(64*c^3*Sqrt[1 - c^2*x^2]) + (b*x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a +
 b*ArcSin[c*x]))/(8*c*Sqrt[1 - c^2*x^2]) - (b*c*x^4*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x]))/(8*Sq
rt[1 - c^2*x^2]) - (x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/(8*c^2) + (x^3*Sqrt[d + c*d*x]*Sq
rt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/4 + (Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^3)/(24*b*c^3*Sqr
t[1 - c^2*x^2])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rule 4823

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Dist[((-d^2)*(g/e))^IntPart[q]*(d + e*x)^FracPart[q]*((f + g*x)^FracPart[q]/(1 - c^2*x^2)^Fr
acPart[q]), Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int x^2 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac {\left (\sqrt {d+c d x} \sqrt {e-c e x}\right ) \int x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\left (\sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int x^3 \left (a+b \sin ^{-1}(c x)\right ) \, dx}{2 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^4 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\left (\sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{8 c^2 \sqrt {1-c^2 x^2}}+\frac {\left (b \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{4 c \sqrt {1-c^2 x^2}}+\frac {\left (b^2 c^2 \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {x^4}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}\\ &=-\frac {1}{32} b^2 x^3 \sqrt {d+c d x} \sqrt {e-c e x}+\frac {b x^2 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}+\frac {\left (3 b^2 \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{32 \sqrt {1-c^2 x^2}}-\frac {\left (b^2 \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d+c d x} \sqrt {e-c e x}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d+c d x} \sqrt {e-c e x}+\frac {b x^2 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}+\frac {\left (3 b^2 \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{64 c^2 \sqrt {1-c^2 x^2}}-\frac {\left (b^2 \sqrt {d+c d x} \sqrt {e-c e x}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{16 c^2 \sqrt {1-c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d+c d x} \sqrt {e-c e x}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d+c d x} \sqrt {e-c e x}-\frac {b^2 \sqrt {d+c d x} \sqrt {e-c e x} \sin ^{-1}(c x)}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^2 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d+c d x} \sqrt {e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.64, size = 297, normalized size = 0.85 \begin {gather*} \frac {32 b^2 \sqrt {d+c d x} \sqrt {e-c e x} \text {ArcSin}(c x)^3-96 a^2 \sqrt {d} \sqrt {e} \sqrt {1-c^2 x^2} \text {ArcTan}\left (\frac {c x \sqrt {d+c d x} \sqrt {e-c e x}}{\sqrt {d} \sqrt {e} \left (-1+c^2 x^2\right )}\right )-12 b \sqrt {d+c d x} \sqrt {e-c e x} \text {ArcSin}(c x) (b \cos (4 \text {ArcSin}(c x))+4 a \sin (4 \text {ArcSin}(c x)))-24 b \sqrt {d+c d x} \sqrt {e-c e x} \text {ArcSin}(c x)^2 (-4 a+b \sin (4 \text {ArcSin}(c x)))+3 \sqrt {d+c d x} \sqrt {e-c e x} \left (32 a^2 c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )-4 a b \cos (4 \text {ArcSin}(c x))+b^2 \sin (4 \text {ArcSin}(c x))\right )}{768 c^3 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]

[Out]

(32*b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^3 - 96*a^2*Sqrt[d]*Sqrt[e]*Sqrt[1 - c^2*x^2]*ArcTan[(c*x*S
qrt[d + c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d]*Sqrt[e]*(-1 + c^2*x^2))] - 12*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSi
n[c*x]*(b*Cos[4*ArcSin[c*x]] + 4*a*Sin[4*ArcSin[c*x]]) - 24*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^2*(-
4*a + b*Sin[4*ArcSin[c*x]]) + 3*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(32*a^2*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2*x^2)
 - 4*a*b*Cos[4*ArcSin[c*x]] + b^2*Sin[4*ArcSin[c*x]]))/(768*c^3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.72, size = 0, normalized size = 0.00 \[\int x^{2} \sqrt {c d x +d}\, \sqrt {-c e x +e}\, \left (a +b \arcsin \left (c x \right )\right )^{2}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)

[Out]

int(x^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

-1/8*a^2*(2*(-c^2*d*x^2*e + d*e)^(3/2)*x*e^(-1)/(c^2*d) - sqrt(-c^2*d*x^2*e + d*e)*x/c^2 - sqrt(d)*arcsin(c*x)
*e^(1/2)/c^3) + sqrt(d)*e^(1/2)*integrate((b^2*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x^2*ar
ctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral((b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(c*d*x + d)*sqrt(-(c*x - 1)*e), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {d \left (c x + 1\right )} \sqrt {- e \left (c x - 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*d*x+d)**(1/2)*(-c*e*x+e)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(x**2*sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*d*x + d)*sqrt(-c*e*x + e)*(b*arcsin(c*x) + a)^2*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d+c\,d\,x}\,\sqrt {e-c\,e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*asin(c*x))^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2),x)

[Out]

int(x^2*(a + b*asin(c*x))^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2), x)

________________________________________________________________________________________